

Dreikernige Niob-Oxid-Cluster¹⁾. – Synthese von $(\eta^5-C_5Me_5)_3Nb_3(\mu_2-O)_3(\mu_3-O)-(\mu_2-Cl)Cl_3$ und $[(\eta^5-C_5Me_5)_3Nb_3(OH)_2(\mu_2-OH)(\mu_3-OH)(\mu_2-O)_2(\mu_3-O)Cl]Cl$

Iring Leichtweis, Herbert W. Roesky*, Mathias Noltemeyer und Hans-Georg Schmidt

Institut für Anorganische Chemie der Universität Göttingen, Tammannstraße 4, D-3400 Göttingen

Eingegangen am 19. März 1990

Key Words: Niobium oxide clusters / Organometallic complexes / Oxido bridges / Hydroxo bridges

Hydrolysis of η^{5} -C₃Me₅NbCl₄ with excess of water leads to a mixture of products. Pyrolysis of this crude mixture gives (η^{5} -C₅Me₅)₃Nb₃(μ_{2} -O)₃(μ_{3} -O)(μ_{2} -Cl)Cl₃ (1) in good yield. On treatment of 1 with water [(η^{5} -C₅Me₅)₃Nb₃(OH)₂(μ_{2} -OH)(μ_{3} -OH)-

Organo-Metall-Oxid-Komplexe der frühen Übergangsmetalle haben in den letzten Jahren verstärktes Interesse gefunden. Dies geht aus einer Reihe von Übersichtsartikeln²⁻⁴) hervor.

Die Darstellung dieser Verbindungen erfolgt mit wenigen Ausnahmen durch Hydrolyse der Organo-Metall-Halogenide. In diesem Zusammenhang seien die Umsetzungen von Cp*TiCl₃⁵⁻⁶, (Cp* = η^{5} -C₅Me₅), Cp*TiBr₃⁷, Cp*TiMe₃⁸, Cp*ZrCl₃^{9,10}, Cp*HfCl₃¹⁰, Cp*V(O)Cl₂^{11,12} und Cp*Ta-Cl₄¹³⁻¹⁵) genannt. Man erhält dabei zwei-, drei- oder vierkernige Metall-Oxid-Cluster. Es überrascht nicht, daß entsprechende Umsetzungen von Cp*NbCl₄ bislang nicht vorgenommen worden sind. Die Ausgangsverbindung Cp*NbCl₄ ist erst seit kurzer Zeit in hoher Reinheit und guten Ausbeuten darstellbar¹⁶.

Wir berichten im folgenden über die thermische Zersetzung des Hydrolyseprodukts von Cp*NbCl₄.

Ergebnisse

Synthese von $Cp_3^*Nb_3(\mu_2-O)_3(\mu_3-O)(\mu_2-Cl)Cl_3$ (1) und [$Cp_3^*Nb_3(OH)_2(\mu_2-OH)(\mu_3-OH)(\mu_2-O)_2(\mu_3-O)Cl$]Cl (2)

Aus der Umsetzung von Cp*NbCl₄¹⁶⁾ mit überschüssigem Wasser läßt sich ein orangeroter Feststoff isolieren. Aufgrund der Schwerlöslichkeit dieser Substanz in gängigen organischen Lösungsmitteln ist die ¹H-NMR-spektroskopische Untersuchung erschwert. Man kann jedoch auf ein Substanzgemisch schließen. Alle Kristallisationsversuche blieben bislang ohne Erfolg. 48stündiges Erhitzen dieses

$$\begin{array}{c} \text{Cp*NbCl}_{4} & \xrightarrow{1. \text{ H}_{2}\text{O}'-\text{ HCl}} \\ \text{Cp*NbCl}_{4} & \xrightarrow{2. 135 \,^{\text{O}}\text{C}, \, 48 \, \text{h}} & \text{Cp}_{3}^{*} \, \text{Nb}_{3}(\mu_{2}\text{-}\text{O})_{3}(\mu_{3}\text{-}\text{O})(\mu_{2}\text{-}\text{Cl})\text{Cl}_{3} \\ & & 1 \\ \end{array}$$

$$\xrightarrow{+ 3 \,^{\text{H}_{2}\text{O}}} \\ \xrightarrow{- 2 \,^{\text{HCl}}} & \text{[Cp}_{3}^{*} \, \text{Nb}_{3}(\text{OH})_{2}(\mu_{2}\text{-}\text{OH})(\mu_{3}\text{-}\text{OH})(\mu_{2}\text{-}\text{O})_{2}(\mu_{3}\text{-}\text{O})\text{Cl}]\text{Cl}_{4} \\ \end{array}$$

 $(\mu_2\text{-}O)_2(\mu_3\text{-}O)Cl]Cl$ (2) is obtained. The products 1 and 2 were characterized analytically and by X-ray structure determination.

Rohprodukts auf 135°C führt selektiv und mit guten Ausbeuten zu 1.

Zu hohe Temperaturen begünstigen die Bildung braun gefärbter Zersetzungsprodukte. Bei zu niedrigen Reaktionstemperaturen verläuft die Umsetzung nicht vollständig. Die Reinigung des braungelben Rohprodukts erfolgt durch mehrfache Extraktion mit *n*-Hexan. Aus dem Extrakt läßt sich 1 als gelber mikrokristalliner Feststoff isolieren. Rote Einkristalle von 1, die Lösungsmittelmoleküle enthalten, erhält man aus Acetonitril.

Die Umsetzung von 1 mit überschüssigem Wasser ergibt quantitativ 2, das als hellgelber Feststoff isoliert wird. Einkristalle von 2 erhält man durch Umkristallisieren aus Dichlormethan/n-Hexan (1:2).

Einkristall-Röntgenstrukturanalysen von 1 und 2

Eine Zusammenfassung der Kristalldaten von 1 und 2 befindet sich in Tab. 1.

Die Molekülstruktur von 1 im Kristall ist in Abb. 1 wiedergegeben. Die Struktur der homologen Tantalverbindung konnte wegen Fehlordnungen im Kristall nur teilweise gelöst werden^{13,14)}. Verbindung 1 besteht aus drei Cp*Nb-Einheiten, die durch drei Sauerstoffatome [O(2), O(3), O(4)] zu einem dreikernigen Niob-Oxid-Cluster verbunden sind. Ein viertes Sauerstoffatom [O(1)] überkappt die drei Niob-Atome. Zwei Niob-Atome [Nb(2), Nb(3)] sind zusätzlich über ein Chloratom [Cl(4)] verbrückt. An jedes Niob-Atom ist ein weiteres Chlor-Atom gebunden. Wenn man den Cp*-Rest als Massenpunkt nimmt, resultiert für ein Niob-Atom [Nb(1)] eine verzerrt trigonal bipyramidale- und für zwei Niob-Atome [Nb(2), Nb(3)] eine verzerrt oktaedrische Umgebung.

Aus Abb. 2 ist ersichtlich, daß die zentrale fünfgliedrige Einheit [Nb(2), O(2), Nb(1), O(3), Nb(3)] nahezu planar ist. Zwei Cp*-Ringe liegen unterhalb und einer oberhalb dieser Ebene, aus der das O(2)-Atome mit 18.8 pm die größte Aus-

Tab.	1.	Kristalldaten,	Intensitätsmessungen	und	Verfeinerungen
			von 1 und 2		-

3274 You 1997 You 199		
Formel	$C_{30}H_{45}Cl_4Nb_3O_4$	$C_{30}H_{49}Cl_2Nb_3O$
	engen	· CH-CL-1
Raumeruppe	P2.2.2.	C2/c
a [nm]	1171 0(10)	3512 3(10)
h [pm]	1686 8(8)	1149 4(1)
c [pm]	1901 1(13)	1839 ((1))
ß [°]	(90)	94 21(1)
Zellvolumen [nm ³]	3 7 5 5 1	7 404
Formeleinheiten 7	4	8
Dichte o $[Mg \cdot m^{-3}]$	1.65	1 66*
Absorptionskoeffizient $u(Mo_K)$	1.05	1.00
$[\text{mm}^{-1}]$	1 18	1 13
[mm]	1.10	1.15
STOE-Vierkreisdiffraktometer, Mo- Profiloptimierte 20.00-Abtastungen	K_{α} (Rev. 6.2), $T = 2$	0°C
Kristallgröße [mm]	$0.2 \times 0.4 \times 0.6$	$0.3 \times 0.5 \times 0.8$
Absorptionskorrektur durch		
azimuthale Abtastungen $R_{\rm w}$	$0.037 \rightarrow 0.015$	0.034→0.017
Transmission	0.22 - 0.29	0.25 - 0.30
Reflexe bis $2\Theta_{max}$	45	45
Gemessen	3111	10208
Symmetrieunabhängig	2774	4824
R _{int}	0.016	0.013
$\operatorname{Mit}_{F_{\alpha}} > 3\sigma(F_{\alpha});$		
beobachtete Reflexe m	2637	4448
V CL A DALA	200	1024
verieinerte Parameter n	398	403*
Goodness of lit		
$[2.w(F_{\rm o} - F_{\rm c})^2/(m-n)]^{1/2}$	1.44	2.14
$K = \sum_{i} F_{o} - F_{c} / \sum_{i} F_{o} $	0.031	0.030
$WK = K_g =$	0.000	0.040
$\left[\sum w(F_{\rm o} - F_{\rm c})^2 / \sum w F_{\rm o} ^2 \right]^{1/2}$	0.038	0.043
Wichtungsschema $w^{+} =$	0.000.1	
$[\sigma^{2}(F_{o}) + g F_{o} ^{2}]; g =$	0.0004	0.0002
Verleinerung der	4.0(0)	
anomaten Dispersion	$\eta = 1.2(2)$	authors.
Kestelektronendichte		
(10° e pm ⁻)	0.2	0.4*
Maximum	0.3	0.6*
Minimum	-0.5	-0./
	onntan maht in dar	I littarongolak frona

* H-Atome sowie CH₂ aus CH₂Cl₂ konnten nicht in der Differenzelektronendichte gefunden werden; C-H wurde nach einem Reitermodell mit $d_{C-H} =$ 96 pm berücksichtigt.

Verwendete Programme

SHELXS-86, SHELX76

Abb. 1. Molekülstruktur von 1 im Kristall

lenkung aufweist. Das Molekül besitzt eine nicht-kristallographische Spiegelebene durch die Atome Cl(1), Nb(1), O(1), O(4) und Cl(4). Die Nb-(μ_2 -O)-Bindungslängen variieren zwischen Werten von 191.0(5) und 201.5(5) pm. Für die Nb-(μ_3 -O)-Bindungslängen findet man im Mittel 206.2 pm. Vergleichbare Werte beschreiben Cotton et al.¹⁷⁾ für andere Triniob-Cluster.

Abb. 2. Seitenansicht der zentralen Einheit von 1 ohne Cp*-Reste

In H₂CPPh₂=NNbCl₃ONbCl₃N = PPh₂CH₂ haben wir Nb-O-Bindungslängen von 189.5(1) pm gefunden¹⁸⁾. Die Bindungslängen zwischen den Nb-Atomen und den terminalen Cl-Atomen betragen im Mittel 241.8 pm, während für die Nb-(μ_2 -Cl)-Abstände 264.9 pm angegeben werden. Sie zeigen den erwarteten Trend, daß der Abstand Nb-Cl (terminal) kleiner als Nb-(μ_2 -Cl) ist¹⁹.

Abb. 3. Molekülstruktur von 2 im Kristall (ohne Chlorid-Ion und H-Atome an den Sauerstoffen)

Verbindung 2 ist isomorph zu der homologen Tantalverbindung^{13,14)}. In Abb. 3 ist die Molekülstruktur von 2 im Kristall dargestellt. Die Lage der Wasserstoffatome konnte nicht bestimmt werden. Aus den Nb-O-Bindungslängen und den Wertigkeiten der Niob-Atome kann jedoch eine plausible Zuordnung der Wasserstoffatome getroffen werden. Wie Abb. 3 zeigt, liegt auch hier ein dreikerniger Metall-Oxid-Cluster vor. Drei Cp*Nb-Einheiten sind über zwei μ_2 -Sauerstoffatome [O(3), O(5)] und eine μ_2 -Hydroxy-Gruppe [O(4)] verbrückt. Die Nb – (μ_2 -O)-Bindungslängen betragen im Mittel 195.4 pm, während man für die entsprechenden Abstände an O(4) 213.2 pm findet. Die drei Niob-Atome sind zusätzlich durch ein μ_3 -O-Atom [O(2), Nb-O-Mittelwert 208.5 pm] und eine μ_3 -OH-Gruppe [O(1), Nb-O-Mittelwert 220.2 pm] überkappt, so daß ein geschlossener Käfig resultiert. In dem kationischen Cluster sind an zwei Niobatome [Nb(2), Nb(3)] je eine Hydroxygruppe (Nb-O im Mittel 191.9 pm) gebunden, während das dritte Niobatom [Nb(1)] einen terminalen Chlorliganden trägt [Nb(1)-Cl(1) 239.9(1) pm]. Die Bindungslänge stimmt recht gut mit dem in 1 gefundenen Wert überein.

Nimmt man wiederum für die Cp*-Reste jeweils einen Massenpunkt an, so haben alle drei Niob-Atome eine verzerrt oktaedrische Umgebung. Aus Abb. 4 geht hervor, daß die zentrale Nb₃(μ_2 -O)₂(μ_2 -OH)-Einheit weitgehend planar ist. Die größte Abweichung von dieser Ebene weist das O(3)-Atom mit 12.1 pm auf. Eine zweite nahezu perfekte Ebene spannen die Atome Nb(1), Cl(1), O(1), O(2) und O(4) auf, die außerdem eine nicht-kristallographische Spiegelebene darstellt. Dem kationischen Cluster dient ein Chlorid-Ion als Gegenion. Die Bindungslängen und -winkel in **2** stimmen sehr gut mit der entsprechenden Tantalverbindung überein^{13,14)}. Wir schlagen deshalb für die Tantalverbindung die Struktur [Cp*₃Ta₃(OH)₂(μ_2 -OH)(μ_3 -OH)(μ_2 -O)₂(μ_3 -O)Cl]Cl vor.

Abb. 4. Seitenansicht des Metall-Oxid-Clusters von 2 (ohne Cp*-Reste, ohne Wasserstoffatome und ohne Chlorid-Ion)

Spektroskopische Untersuchungen an 1 und 2

Das ¹H-NMR-Spektrum von 1, aufgenommen in CDCl₃, zeigt bei $\delta = 2.06$ ein Singulett der Methylprotonen zweier Cp*-Reste und bei $\delta = 2.07$ das Singulett der Methylprotonen des dritten Cp*-Substituenten. Ein weiteres Singulett ($\delta = 2.0$) macht deutlich, daß die Verbindung CH₃CN enthält. **A** 25

Im EI-Massenspektrum von 1 erscheinen lediglich die Fragmente Cp*NbOCl₂ (m/z = 315) und Cp*NbOCl (280).

Im IR-Spektrum ordnen wir versuchsweise die Absorptionsbanden 678 und 588 cm⁻¹ den Nb-O-Nb-Valenzschwingungen zu. In den Wellenzahlenbereichen 670-750 und 550-650 cm⁻¹ treten die Absorptionen der antisymmetrischen und symmetrischen Nb-O-Nb-Streckschwingung auf^{20,21}.

Für 2 beobachtet man im ¹H-NMR-Spektrum zwei Singuletts ($\delta = 1.94$ und 2.02) im Integrationsverhältnis 2:1. Im IR-Spektrum werden die Absorptionen bei 3400 OHund bei 660 und 569 cm⁻¹ den Nb-O-Nb-Valenzschwingungen zugeordnet.

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie unterstützt.

Experimenteller Teil

Cp*NbCl₄ wurde nach Lit.¹⁶⁾ hergestellt. – NMR: Bruker AM 250. – Elementaranalysen: Mikroanalytisches Laboratorium Beller, Göttingen. – IR-Spektren als Nujolverreibungen zwischen KBr-Platten. – Massenspektren: CH5 Varian-MAT und Finnigan-MAT System 8230.

Tab. 2. Atomkoordinaten (× 10⁴) und äquivalente isotrope Temperaturfaktoren [× 10⁻¹] [pm²] von 1; äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors

	x	у	z	U(eq)
Nb(1)	2954(1)	1346(1)	3641(1)	37(1)
Nb(2)	4082(1)	1632(1)	2255(1)	37(1)
Nb(3)	1627(1)	857(1)	2375(1)	38(1)
C1(1)	2166(2)	2597(1)	3999(1)	58(1)
C1(2)	5557(2)	626(1)	2153(2)	72(1)
C1(3)	1766(2)	-575(1)	2325(1)	71(1)
C1(4)	3022(2)	790(1)	1278(1)	66(1)
0(1)	3271(4)	698(3)	2776(2)	40(2)
0(2)	4284(4)	1869(3)	3230(3)	46(2)
0(3)	1454(4)	953(3)	3370(2)	43(2)
0(4)	2411(4)	1893(3)	2359(3)	49(2)
c(11)	4473(8)	870(6)	4405(5)	63(3)
C(12)	3750(10)	1328(5)	4826(5)	67(4)
C(13)	2676(8)	926(5)	4850(4)	58(3)
C(14)	2760(8)	240(5)	4452(4)	53(3)
C(15)	3903(9)	218(5)	4171(4)	59(3)
C(11')	5720(9)	1071(8)	4260(7)	109(6)
C(12!)	4082(15)	2051(7)	5227(6)	127(7)
C(12')	1680(12)	1176(8)	5276(6)	125(6)
C(141)	1863(12)	-366(7)	4367(6)	102(5)
C(15')	4374(12)	- 451 (6)	3738(5)	99(5)
C(21)	5768(7)	2445(5)	1888(6)	64(4)
C(22)	5158(9)	2443(3)	1274(5)	57(3)
C(22)	4005(7)	2242(3)	12174(5)	57(3)
C(24)	4053(7)	2020(4)	1052(5)	49(J) 50(2)
0(24)	4003(7)	3045(4)	1900(0)	52(3)
	3083(8)	2944(3)	2308(5)	20(3)
$C(21^{+})$	7001(10)	2219(8)	1991(9)	125(7)
$C(22^{\circ})$	2019(14)	1/82(7)	0/4(0)	120(6)
(23)	3262(10)	2693(6)	/34(6)	92(5)
$C(24^{-})$	3123(9)	3089(0)	2188(6)	/9(4)
$C(23^{-})$	5587(1Z) 00(10)	2212(0)	2964(3)	9/(3)
0(31)	-90(10)	4/8(8)	1092(7)	94(5)
C(32)	-404(8)	604(9)	23/6(8)	88(5)
0(33)	-297(9)	1396(10)	2540(6)	91(5)
0(34)	133(9)	1/62(6)	1912(9)	92(6)
C(35)	240(10)	L169(8)	1423(5)	80(4)
C(31')	-283(18)	-260(10)	1316(11)	259(15)
C(32')	-941(10)	32(14)	286/(12)	334(21)
C(33')	-593(12)	1859(15)	3158(8)	279(17)
C(34')	283(12)	2590(8)	1817(13)	255(18)
C(35′)	493(15)	1209(12)	668(7)	209(14)
C(2*)	6441(13)	9501(9)	556(9)	132(7)
C(1*)	6848(15)	10024(8)	51(9)	119(7)
N*	7140(22)	10445(10)	-334(11)	191(12)

(Acetonitril)- μ -chloro-trichloro- μ_3 -oxo-tri- μ -oxo-tris(pentamethylcyclopentadienyl)triniob(V) (1 CH₃CN): 1.50 g Cp*NbCl₄ (4.05 mmol) werden in 30 ml *n*-Hexan suspendiert und mit 0.29 ml Wasser (16.0 mmol) versetzt. Diese Mischung rührt man 24 h bei Raumtemp. unter Luftzutritt. Von der schwarzbraunen Reaktionslösung kann man 1.15 g eines orangen Pulvers abfiltrieren, das dreimal mit *n*-Hexan gewaschen wird. Im ¹H-NMR-Spektrum findet man auch nach unterschiedlicher Reaktionsführung zwei Signale: bei $\delta = 2.14$ ein Singulett hoher Intensität und bei $\delta = 2.21$ ein Singulett mit ca. 30% Intensität des ersten Signals. Das Stoffgemisch unterwirft man ohne weitere Versuche der Auftrennung einer

Tab. 3. Atomkoordinaten (× 10⁴) und äquivalente isotrope Temperaturfaktoren [× 10⁻¹] [pm²] von 2; äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors

-				
-	x	У	z	U(eq)
Nb(1)	943(1)	2202(1)	4682(1)	38(1)
Nb(2)	1542(1)	4021(1)	5101(1)	33(1)
ир (з)	1594 (1)	1449 (1)	5754 (1)	31(1)
C1 Ć	2245(1)	1769(1)	3825(1)	56(1)
0(1)	1576(1)	2249(2)	4672(1)	34(1)
$\tilde{o}(\tilde{z})$	1217(1)	2849(2)	5651(1)	33(1)
0(3)	1088(1)	3799(2)	4441(2)	41(1)
$\hat{\alpha}(4)$	1894(1)	3055(2)	5880(1)	36(1)
0(5)	1144(1)	1826(2)	5202(1)	42(1)
0(6)	1952(1)	4214(3)	4474(2)	47(1)
0(7)	2017(1)	665(3)	5366(2)	48(1)
C(11)	645(2)	603(6)	3929(3)	73(2)
	408(2)	1567(7)	3723(3)	80(2)
C(12)	400(2)	1307(7)	3761(3)	50(3)
	022(1)	1007(5)	2266(2)	53(2)
	964 (1) 1002 (2)	1967(5)	3366(2)	55(2)
C(15)	1003(2)	849(5)	3007(3)	110(2)
	242(2)	-521(6)	4277(3)	110(3)
C(12)	~16(2)	1634(8)	3856(4)	118(4)
C(13)	486(2)	3609(6)	31/6(3)	86(3)
$C(14^{-})$	1293(2)	2586(5)	2981(3)	64(2)
C(15')	1336(2)	22(5)	36/5(3)	84(3)
C(21)	1188(2)	5886(4)	5147(3)	62(2)
C(22)	1557(2)	6152(4)	4922(3)	60(2)
C(23)	1825(1)	5898(4)	5523(3)	52(2)
C(24)	1623(1)	5476(4)	6095(3)	50(2)
C(25)	1227(1)	5464(4)	5871(3)	53(2)
C(21')	813(2)	6094(6)	4718(4)	102(3)
C(22')	1662(2)	6648(5)	4223(3)	101(3)
C(23')	2240(2)	6092(5)	5548(4)	82(2)
C(24')	1804(2)	5210(5)	6842(3)	70(2)
C(25')	901(2)	Ş147(5)	6312(3)	82(2)
C(31)	1906(1)	301(4)	6787(2)	51(2)
C(32)	1585(2)	-289(4)	6510(2)	54(2)
C(33)	1253(1)	372(4)	6660(2)	50(2)
C(34)	1386(1)	1409(4)	6999(2)	41(1)
C(35)	1790(1)	1358(4)	7083(2)	43(2)
C(31')	2300(2)	-144(6)	6793(3)	90(3)
C(32')	1581(2)	-1455(5)	6131(3)	96(3)
c(331)	846(2)	21(6)	6527 (3)	80(2)
c(34')	1133 (2)	2349 (5)	7271(3)	69(2)
C(35')	2045(2)	2204 (5)	7494 (3)	72(2)
c1(1)	383(1)	2567 (2)	5318(1)	74(1)
0*	,-/	1311(6)	7500	30(3)
$c_{1}(2)$	22(5)	1781(18)	7688(8)	485(14
c1 (3)	174(2)	3670(7)	7712(8)	245(7)

Pyrolysereaktion. Die Substanz wird ohne Lösungsmittel 48 h in einem offenen Kolben auf 135 °C erhitzt. Das entstehende braungelbe Pulver reinigt man durch zweimalige Extraktion mit *n*-Hexan. Durch Einengen der *n*-Hexan-Extrakte i. Vak. läßt sich 1 als gelber mikrokristalliner Feststoff isolieren. Ausb. 0.77 g (64%), Schmp. >250 °C. Die Verbindung ist in den gängigen organischen Lösungsmitteln gut löslich und nur in *n*-Hexan mäßig löslich. Aus McCN erhält man bei Raumtemp. rote Einkristalle, die Lösungsmittelmoleküle enthalten. – IR: $\tilde{v} = 1123$ sst, 1023 st, 724 st, 678 sst, 588 sst, 527 st cm⁻¹. – ¹H-NMR (CDCl₃): $\delta = 2.0$ (s, MeCN), 2.06 (s, 30 H, Cp*Me), 2.07 (s, 15 H, Cp*Me). - MS (EI): m/z (%) = 315 [Cp*Nb(O)Cl₂] (30), 280 [Cp*Nb(O)Cl] (100). C₃₀H₄₅Cl₄Nb₃O₄ · MeCN (931.3) Ber. C 41.3 H 5.2 Cl 15.2 Gef. C 41.4 H 5.2 Cl 15.1

Tab. 4. Ausgewählte Bindungslängen [pm] und -winkel [°] von 1

Nb(1)-Nb(2) 298	.6 (3)	Nb(1)-Nb(3)	298.1 (3)
Nb(1)-C1(1) 240	.2 (3)	Nb(1)-0(1)	200. 9 (5)
Nb(1)-O(2) 195	.3 (5)	Nb(1)-0(3)	194.7 (5)
Nb(2)-Nb(3) 316	.6 (3)	Nb(2)-C1(2)	242.9 (3)
Nb(2)-C1(4) 264	.6 (3)	Nb(2)-0(1)	208.9 (5)
Nb(2)-O(2) 191	.1 (5)	№ (2)-0(4)	201.5 (5)
Nb(3)-C1(3) 242	4 (3)	Nb(3)-C1(4)	265.1 (3)
Nb(3)-0(1) 208	.9 (5)	№(3)-0(3)	190.9 (5)
Nb(3)-0(4) 197	.4 (5)		
Nb(2) - Nb(1) - Nb(3)	64.1(1)	Nb(2)-Nb(1)-C	1(1) 106.1(1)
Nb(3)-Nb(1)-C1(1)	105.7(1)	Nb(2)-Nb(1)-О	(1) 44.3(1)
Nb(3)-Nb(1)-O(1)	44.4(1)	Cl(1)-Nb(1)-O	(1) 141.4(2)
Nb(2)-Nb(1)-O(2)	38.9(2)	Nb(3)-Nb(1)-O	(2) 102.6(2)
C1(1)-Nb(1)-O(2)	91.3(2)	0(1)-Nb(1)-O(2) 76.8(2)
Nb(2)-Nb(1)-O(3)	102.8(1)	Nb(3)-Nb(1)-0	(3) 38.9(1)
C1(1)-Nb(1)-O(3)	91.6(2)	0(1)-Nb(1)-O(3) 76.4(2)
0(2)-Nb(1)-0(3)	140.1(2)	Nb(1)-Nb(2)-N	Ъ(3) 57.9(1)
Nb(1) - Nb(2) - C1(2)	105.8(1)	Nb(3)-Nb(2)-C	1(2) 111.3(1)
Nb(1) - Nb(2) - C1(4)	109.0(1)	Nb(3)-Nb(2)-C	1(4) 53.4(1)
C1(2)-Nb(2)-C1(4)	84.4(1)	Nb(1)-Nb(2)-0	(1) 42.2(1)
Nb(3) - Nb(2) - O(1)	40.7(1)	C1(2)-Nb(2)-O	(1) 80.4(2)
C1(4) - Nb(2) - O(1)	73.4(1)	Nb(1)-Nb(2)-0	(2) 39.9(2)
Nb(3) - Nb(2) - O(2)	97.4(2)	C1(2)-Nb(2)-O	(2) 97.8(2)
C1(4)-Nb(2)-O(2)	148.3(2)	0(1)-Nb(2)-O(2) 75.8(2)
Nb(1)-Nb(2)-O(4)	61.3(2)	Nb(3)-Nb(2)-0	(4) 37.0(1)
C1(2) - Nb(2) - O(4)	148.3(2)	C1(4)-Nb(2)-O	(4) 74.4(2)
0(1)-Nb(2)-0(4)	71.2(2)	0(2)-Nb(2)-0(4) 88.8(2)
Nb(1)-Nb(3)-Nb(2)	58.0(1)	Nb(1)-Nb(3)-C	1(3) 105.8(1)
Nb(2) - Nb(3) - C1(3)	110.3(1)	Nb(1)-Nb(3)-C	1(4) 109.0(1)
Nb(2)-Nb(3)-C1(4)	53.2(1)	C1(3)-Nb(3)-C	1(4) 83.4(1)
Nb(1) - Nb(3) - O(1)	42.3(1)	Nb(2)-Nb(3)-O	(1) 40.7(1)
C1(3)-Nb(3)-O(1)	79.8(1)	C1(4)-Nb(3)-O	(1) 73.3(1)
Nb(1)-Nb(3)-O(3)	39.8(2)	Nb(2)-Nb(3)-0	(3) 97.6(2)
C1(3)-Nb(3)-O(3)	97.4(2)	C1(4)-Nb(3)-O	(3) 148.0(2)
O(1)-Nb(3)-O(3)	75.3(2)	Nb(1)-Nb(3)-O	(4) 61.7(2)
Nb(2) - Nb(3) - O(4)	37.9(1)	Cl(3)-Nb(3)-O	(4) 148.2(2)
Cl(4)-Nb(3)-O(4)	74.9(2)	0(1)-Nb(3)-0((4) 72.0(2)
0(3)-Nb(3)-0(4)	89.4(2)	Nb(2)-C1(4)-N	Љ(3) 73.4(1)
Nb(1)-0(1)-Nb(2)	93.5(2)	Nb(1)-0(1)•Nb	(3) 93.3(2)
Nb(2)-O(1)-Nb(3)	98.5(2)	Nb(1)-0(2)-Nb	(2) 101.2(2)
Nb(1) - O(3) - Nb(3)	101.2(2)	Nb(2) - O(4) - Nb	(3) 105.1(2)

Chloro- μ -hydroxo- μ_3 -hydroxo-dihydroxo-di- μ -oxo- μ_3 -oxo-tris-(pentamethylcyclopentadienyl)triniob(V)-chlorid (2): Eine gelbe Suspension von 0.77 g 1 (0.86 mmol) in 50 ml *n*-Hexan wird mit 4.0 ml Wasser (0.22 mol) versetzt und 12 h gerührt. Anschließend filtriert man einen blaßgelben mikrokristallinen Feststoff ab. Das Produkt wird 24 h i. Vak. getrocknet, um Wasserspuren zu entfernen. Die Verbindung ist noch besser als 1 in den gängigen organischen Lösungsmitteln löslich. Lediglich in MeCN und *n*-Hexan stellt man eine schlechte Löslichkeit fest. Gelbe Einkristalle erhält man durch langsames Einengen einer Lösung des Komplexes in Dichlormethan/*n*-Hexan (1:2). Die Verbindung enthält Wasserund Dichlormethan-Moleküle im Kristall. Ausb. 0.53 g (70%), Schmp. >250 °C. – IR: $\tilde{v} = 3400$ st, breit, 1261 st, 1097 sst, 1023 st, 802 st, 660 sst, 569 sst cm⁻¹. – ¹H-NMR (CDCl₃): $\delta = 1.94$ (s, 30H, Cp*Me), 2.02 (s, 15H, Cp*Me).

 $\begin{array}{c} C_{30}H_{49}Cl_2Nb_3O_7\cdot 1/2 \ H_2O\ (880.3) & \text{Ber. C } 40.9 \ H\ 5.7 \ Cl\ 8.0 \\ & \text{Gef. C } 40.6 \ H\ 5.7 \ Cl\ 7.9 \end{array}$

Einkristall-Röntgenstrukturanalyse von 1 und 2^{22} : In Tab. 2 und 3 sind die Atomkoordinaten sowie in Tab. 4 und 5 ausgewählte Bindungslängen und -winkel von 1 und 2 angegeben.

Tab. 5. Ausgewählte Bindungslängen [pm] und -winkel [°] von 2

Nb(1)-Nb(2)	302.6 (1)	Nb(1)-Nb(3)	303.3 (1)
Nb(1)-0(1)	222.5 (3)	Nb(1)-0(2)	209.8 (2)
Nb(1)-O(3)	196.5 (3)	Nb(1)-0(5)	195.3 (3)
Nb(1)-C1(1)	239.9 (2)	Nb(2)-Nb(3)	319.1 (1)
Nb(2)+O(1)	219.1 (3)	Nb(2)-0(2)	207,5 (3)
Nb(2)-0(3)	194.6 (3)	Nb(2)-0(4)	213.4 (3)
Nb(2)-0(6)	192.3 (3)	Nb(3)-0(1)	219.0 (3)
Nb(3)-0(2)	208.2 (3)	ND(3)-0(4)	212,9 (3)
Nb(3)-0(5)	195.0 (3)	Nb(3)-0(7)	1 92 .0 (3)
Nb(2)-Nb(1)-Nb	(3) 63.6(1)	Nb(2)-Nb(1)-C	(1) 46.3(1)
Nb(3)-Nb(1)-O(1) 46.1(1)	Nb(2)-Nb(1)-C	(2) 43.2(1)
Nb(3)-Nb(1)-O(2) 43.3(1)	0(1)-Nb(1)-0((2) 66.5(1)
Nb(2)-Nb(1)-O(3) 39.1(1)	Nb(3)-Nb(1)-C	(3) 102.5(1)
0(1)-Nb(1)-O(3) 72.5(1)	0(2)-Nb(1)-O((3) 75.5(1)
Nb(2)-Nb(1)-O(5) 102.4(1)	Nb(3)-Nb(1)-C)(5) 39.0(1)
0(1)-Nb(1)-O(5) 72.5(1)	0(2)-Nb(1)-0((5) 75.2(1)
0(3)-Nb(1)-0(5) 140.9(1)	Nb(2)-Nb(1)-C	1(1) 109.6(1)
Nb(3)-Nb(1)-C1	(1) 109.8(1)	O(1)-Nb(1)-C1	(1) 148.8(1)
0(2)-Nb(1)-C1(1) 82.3(1)	0(3)-Nb(1)-Cl	(1) 100.6(1)
0(5)-Nb(1)-C1(1) 100.5(1)	Nb(1)-Nb(2)-N	љ(3) 58.3(1)
Nb(1) - Nb(2) - O(1) 47.2(1)	Nb(3)-Nb(2)-C)(1) 43.2(1)
Nb(1) - Nb(2) - O(2) 43.8(1)	Nb(3)-Nb(2)-C)(2) 39.9(1)
0(1) - Nb(2) - 0(2)	67.5(1)	Nb(1)-Nb(2)-C)(3) 39.5(1)
Nb(3)-Nb(2)-O(3) 97.7(1)	O(1)-Nb(2)-O((3) 73.6(1)
0(2) - Nb(2) - 0(3)	3) 76.4(1)	Nb(1)-Nb(2)-()(4) 99.7(1)
Nb(3)-Nb(2)-O((4) 41.5(1)	0(1)-Nb(2)-0((4) 73.4(1)
0(2)-Nb(2)-0(4	69.3(1)	0(3)-Nb(2)-0((4) 139.2(1)
Nb(1)-Nb(2)-O(6) 117.7(1)	Nb(3)-Nb(2)-C)(6) 107.9(1)
0(1)-Nb(2)-O(6	b) 80.1(1)	0(2)-Nb(2)-0((6) 146.0(1)
0(3)-Nb(2)-0(6) 104.8(1)	0(4)-Nb(2)-0((6) 92.3(1)
Nb(1)-Nb(3)-Nb	(2) 58.1(1)	Nb(1)-Nb(3)-C)(1) 47.1(1)
Nb(2)-Nb(3)-O(1) 43.3(1)	Nb(1)-Nb(3)-()(2) 43.7(1)
Nb(2)-Nb(3)-O(2) 39.8(1)	0(1)-Nb(3)-0((2) 67.5(1)
Nb(1)-Nb(3)-O(4) 99.6(1)	Nb(2)-Nb(3)-0	0(4) 41.6(1)
0(1)-Nb(3)-0(4) 73.5(1)	0(2)-Nb(3)-0	(4) 69.2(1)
Nb(1)-Nb(3)-O((5) 39.1(1)	Nb(2)-Nb(3)-(0(5) 97.0(1)
0(1)-Nb(3)-0(5	5) 73.3(1)	O(2)-Nb(3)-O	(5) 75.6(1)
0(4)-Nb(3)-0(5	5) 138.6(1)	Nb(1)-Nb(3)-(D(7) 117.3(1)
Nb(2)-Nb(3)-O	(7) 108.6(1)	O(1)-Nb(3)-O	(7) 80.2(1)
0(2)-Nb(3)-0(7	7) 146.3(1)	0(4)-Nb(3)-0	(7) 93.3(1)
0(5)-Nb(3)-0(7	7) 104.7(1)	Nb(1)-O(1)-N	b(2) 86.5(1)
Nb(1)-O(1)-Nb	(3) 86.8(1)	Nb(2)-O(1)-N	o(3) 93.5(1)
Nb(1)-O(2)-Nb	(2) 92.9(1)	Nb(1)-O(2)-Ni	93.0(1) 93.0(1)
Nb(2)-O(2)-Nb	(3) 100.3(1)	Nb(1)-O(3)-N	b(2) 101.4(1)
Nb(2)-0(4)-Nb	(3) 96.9(1)	Nb(1)-0(5)-N	(3) 102.0(1)

CAS-Registry-Nummern

1: 127541-18-8 / 2: 127541-20-2 / Cp*NbCl4: 80432-35-5

- ¹⁾ Herrn Professor Rolf Appel zum 70. Geburtstag gewidmet.
- ²⁾ B. O. West, Polyhedron 8 (1989) 219.
 ³⁾ W. A. Herrmann, E. Herdtweck, M. Flöel, J. Kulpe, U. Küsthardt, J. Okuda, Polyhedron 6 (1987) 1165.
- ⁴⁾ F. Bottomley, L. Sutin, Adv. Organomet. Chem. 28 (1988) 339. ⁵⁾ L. M. Babcock, V. W. Day, W. G. Klemperer, J. Chem. Soc., Chem. Commun. 1987, 858.
- ⁶ L. M. Babcock, W. G. Klemperer, Inorg. Chem. 28 (1989) 2003. ⁷⁾ F. Palacios, P. Royo, R. Serrano, J. L. Balcázar, J. Fonseca, F. Florencio, J. Organomet. Chem. 375 (1989) 51.
 ⁸⁾ S. Garcia Blanco, M. P. Gómez Sal, S. Martinez Carreras, M.
- Mena, P. Royo, R. Serrano, J. Chem. Soc., Chem. Commun. 1986, 1572
- ⁹⁾ L. M. Babcock, V. W. Day, W. G. Klemperer, J. Chem. Soc., Chem. Commun. 1988, 519.
 ¹⁰⁾ L. M. Babcock, V. W. Day, W. G. Klemperer, Inorg. Chem. 28
- 10) (1989) 806.
- ¹¹⁾ F. Bottomley, L. Sutin, J. Chem. Soc., Chem. Commun. 1987, 1112
- ¹²⁾ F. Bottomley, J. Darkwa, L. Sutin, P. S. White, Organometallics 5 (1986) 2165.
- ¹³⁾ P. Jernakoff, C. de Meric de Bellefon, G. L. Geoffroy, A. L. Rheingold, S. J. Geib, *Organometallics* 6 (1987) 1362.
 ¹⁴⁾ P. Jernakoff, C. de Meric de Bellefon, G. L. Geoffrey, A. L. Distriction of the second second
- Rheingold, S. J. Geib, New J. Chem. 12 (1988) 329.
- ¹⁵⁾ V. C. Gibson, T. P. Kee, J. Chem. Soc., Chem. Commun. 1989, 656.
- ¹⁶⁾ T. Okamoto, H. Yasuda, A. Nakamura, Y. Kai, N. Kanehisa, N. Kasai, J. Am. Chem. Soc. 110 (1988) 5008.
- ¹⁷⁾ F. A. Cotton, M. P. Diebold, W. J. Roth, Inorg. Chem. 27 (1988) 2347
- ¹⁸⁾ H. W. Roesky, J. Liebermann, M. Noltemeyer, H.-G. Schmidt, Chem. Ber. 122 (1989) 1641.
- ¹⁹⁾ M. D. Curtis, J. Real, Inorg. Chem. 27 (1988) 3176.
- ²⁰⁾ A. M. Andrew, F. A. Jalon, A. Otero, J. Organomet. Chem. 353 (1988) 185.
- ²¹⁾ A. Antinolo, A. Otero, F. Urbanos, S. G. Blanco, S. M. Carrera, J. S. Aparicio, J. Organomet. Chem. 350 (1988) 25.
- ²²⁾ Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-54470, der Autorennamen und des Zeitschriftenzitats angefordert werden.

[102/90]